Image-based calibration of a deformable mirror in wide-field microscopy.
نویسندگان
چکیده
Optical aberrations limit resolution in biological tissues, and their influence is particularly large for promising techniques such as light-sheet microscopy. In principle, image quality might be improved by adaptive optics (AO), in which aberrations are corrected by using a deformable mirror (DM). To implement AO in microscopy, one requires a method to measure wavefront aberrations, but the most commonly used methods have limitations for samples lacking point-source emitters. Here we implement an image-based wavefront-sensing technique, a variant of generalized phase-diverse imaging called multiframe blind deconvolution, and exploit it to calibrate a DM in a light-sheet microscope. We describe two methods of parameterizing the influence of the DM on aberrations: a traditional Zernike expansion requiring 1040 parameters, and a direct physical model of the DM requiring just 8 or 110 parameters. By randomizing voltages on all actuators, we show that the Zernike expansion successfully predicts wavefronts to an accuracy of approximately 30 nm (rms) even for large aberrations. We thus show that image-based wavefront sensing, which requires no additional optical equipment, allows a simple but powerful method to calibrate a deformable optical element in a microscope setting.
منابع مشابه
Novel Deconvolution Kernel for Extended Depth-of-Field Microscopy with a High-Speed Deformable Mirror
A deformable mirror is used to scan the focal plane during the camera exposure, obtaining extended depth-of-field. A deconvolution kernel is approximated for a given scan depth and used to de-blur the image. OCIS codes: (180.2520) Fluorescence microscopy; (110.1080) Active or adaptive optics; (100.1830) Deconvolution
متن کاملAdaptive optics scanning laser ophthalmoscope with integrated wide-field retinal imaging and tracking.
We have developed a new, unified implementation of the adaptive optics scanning laser ophthalmoscope (AOSLO) incorporating a wide-field line-scanning ophthalmoscope (LSO) and a closed-loop optical retinal tracker. AOSLO raster scans are deflected by the integrated tracking mirrors so that direct AOSLO stabilization is automatic during tracking. The wide-field imager and large-spherical-mirror o...
متن کاملExtended depth-of-field microscopy with a high-speed deformable mirror.
We present a wide-field fluorescence microscopy add-on that provides a fast, light-efficient extended depth-of-field (EDOF) using a deformable mirror with an update rate of 20 kHz. Out-of-focus contributions in the raw EDOF images are suppressed with a deconvolution algorithm derived directly from the microscope 3D optical transfer function. Demonstrations of the benefits of EDOF microscopy are...
متن کاملClosed loop adaptive optics for microscopy without a wavefront sensor.
A three-dimensional wide-field image of a small fluorescent bead contains more than enough information to accurately calculate the wavefront in the microscope objective back pupil plane using the phase retrieval technique. The phase-retrieved wavefront can then be used to set a deformable mirror to correct the point-spread function (PSF) of the microscope without the use of a wavefront sensor. ...
متن کاملScanning hall probe microscopy technique for investigation of magnetic properties
Scanning Hall Probe Microscopy (SHPM) is a scanning probe microscopy technique developed to observe and image magnetic fields locally. This method is based on application of the Hall Effect, supplied by a micro hall probe attached to the end of cantilever as a sensor. SHPM provides direct quantitative information on the magnetic state of a material and can also image magnetic induction under a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied optics
دوره 49 11 شماره
صفحات -
تاریخ انتشار 2010